nav-left cat-right
cat-right

Radiation able to be securely stored in nontoxic molecule

Researchers have discovered that microscopic “bubbles” developed at Kansas State University are safe and effective storage lockers for harmful isotopes that emit ionizing radiation for treating tumors.

The findings can benefit patient health and advance radiation therapy used to treat cancer and other diseases, said John M. Tomich, a professor of biochemistry and molecular biophysics who is affiliated with the university’s Johnson Cancer Research Center.

Tomich conducted the study with Ekaterina Dadachova, a radiochemistry specialist at Albert Einstein College of Medicine in New York, along with researchers from his group at Kansas State University, the University of Kansas, Jikei University School of Medicine in Japan and the Institute for Transuranium Elements in Germany. They recently published their findings in the study “Branched Amphiphilic Peptide Capsules: Cellular Uptake and Retention of Encapsulated Solutes,” which appears in the scientific journal Biochimica et Biophysica Acta.

The study looks at the ability of nontoxic molecules to store and deliver potentially harmful alpha emitting radioisotopes — one of the most effective forms of radiation therapy.

BIONITY